(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2021-32696 (P2021-32696A)

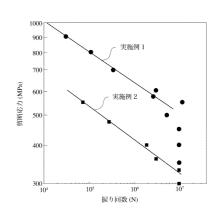
(43) 公開日 令和3年3月1日(2021.3.1)

(51) Int.Cl.	F 1		テーマコード(参考)	
GO1N 3/34	(2006.01) GO 1 N	3/34 D	2G061	
B21B 27/00	(2006.01) GO 1 N	3/34 A	4E016	
C22C 37/00	(2006.01) B 2 1 B	27/00 C		
C22C 38/00	(2006.01) C 2 2 C	37/00 B		
C22C 38/56	(2006.01) C 2 2 C	38/00 3 O 1 Z		
	審査請求	未請求 請求項の数 4 〇L	(全9頁) 最終頁に続く	
(21) 出願番号	特願2019-153043 (P2019-153043)	(71) 出願人 000005083	出願人 000005083	
(22) 出願日	令和1年8月23日 (2019.8.23)	日立金属株式	日立金属株式会社	
		東京都港区港	東京都港区港南一丁目2番70号	
		(71) 出願人 598015084	598015084	
		学校法人福岡:	学校法人福岡大学	
		福岡県福岡市	福岡県福岡市城南区七隈8丁目19番1号	
		(74) 代理人 100080012		
		弁理士 高石	橘馬	
		(74)代理人 100168206		
		弁理士 高石	健二.	

(72) 発明者 野田 朗

最終頁に続く

福岡県北九州市若松区北浜一丁目9番1号


株式会社日立金属若松内

(54) 【発明の名称】 鋳造材の疲労試験方法

(57)【要約】 (修正有)

【課題】鋳造材の耐疲労強度(剪断強度)を簡単かつ低 コストで迅速に予測することができる方法を提供する。 【解決手段】所望の圧延条件における鋳鉄材の剪断疲労 強度を予測する方法は、(1)圧延ロール外層材と同じ組 成を有する鋳造された素材から少なくとも2つの試験片 を作製し、(2)前記試験片に対してその軸心方向に圧縮 応力をかけた状態で、圧延でかかるより大きな複数レベ ルの軸心回りの剪断応力を繰り返し付与して、前記試験 片の表面に剪断き裂を発生及び進展させることにより破 断までの捩り回数を測定し、(3)破断までの捩り回数の 測定値を剪断応力振幅 - 捩り回数の両対数グラフにプロ ットすることにより剪断応力振幅 - 捩り回数の直線を求 め、(4)前記直線を圧延で要求される破断までの捩り回 数まで外挿することにより、破断までの所望の捩り回数 における剪断応力振幅を求め、それを前記鋳鉄材の剪断 疲労強度とすることからなる。

【選択図】図2

